6 research outputs found

    Quality Assessment of In-the-Wild Videos

    Full text link
    Quality assessment of in-the-wild videos is a challenging problem because of the absence of reference videos and shooting distortions. Knowledge of the human visual system can help establish methods for objective quality assessment of in-the-wild videos. In this work, we show two eminent effects of the human visual system, namely, content-dependency and temporal-memory effects, could be used for this purpose. We propose an objective no-reference video quality assessment method by integrating both effects into a deep neural network. For content-dependency, we extract features from a pre-trained image classification neural network for its inherent content-aware property. For temporal-memory effects, long-term dependencies, especially the temporal hysteresis, are integrated into the network with a gated recurrent unit and a subjectively-inspired temporal pooling layer. To validate the performance of our method, experiments are conducted on three publicly available in-the-wild video quality assessment databases: KoNViD-1k, CVD2014, and LIVE-Qualcomm, respectively. Experimental results demonstrate that our proposed method outperforms five state-of-the-art methods by a large margin, specifically, 12.39%, 15.71%, 15.45%, and 18.09% overall performance improvements over the second-best method VBLIINDS, in terms of SROCC, KROCC, PLCC and RMSE, respectively. Moreover, the ablation study verifies the crucial role of both the content-aware features and the modeling of temporal-memory effects. The PyTorch implementation of our method is released at https://github.com/lidq92/VSFA.Comment: 9 pages, 7 figures, 4 tables. ACM Multimedia 2019 camera ready. -> Update alignment formatting of Table

    Large-Scale Study of Perceptual Video Quality

    No full text

    Predicting Detection Performance on Security X-Ray Images as a Function of Image Quality

    No full text
    corecore